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Reversible dissociation after instantaneous excitation and the fluorescence quantum yields of excited molecules
and the products of their dissociation are considered in the framework of integral kinetic equations. A number
of different theories are brought to the same integral form, and the kernels of corresponding integral equations
are specified. All of the theories are compared using as criteria the concentration dependence of either their
kernels or the corresponding Stern-Volmer constants.

I. Introduction

In the last few decades, the attention of many theorists has
been focused on the reversible association/dissociation reaction
of excited particles in liquid solutions. Such a reaction is usually
represented by the following formal scheme:

whereuA ) 1/τA anduC ) 1/τC are the decay rates of excitations
that may be either equal or different. The best-studied example
is the reversible proton transfer from an excited photoacid to
the solvent:1-6

The reaction may develop in opposite directions depending
on what was initially created by a light pulse, A* or C*.

The vast majority of competing theories were aimed at
specifying the kinetics of a system’s approach to equilibrium
at uA ) uC ) 0, assuming that B’s are present in great excess,
so thatc ) [B] remains constant. In the case of reaction 1.2,
the desirable concentration of H+ in solution is provided by
the addition of an inert acid (e.g., HClO4). The added protons
compete with a geminate proton for the restoration of C*. The
kinetics of approaching the equilibrium is universally described
by the relaxation functionR(t), which is defined as follows:

Here,PC(t) ) NC(t)/[NC(0) + NA(0)] andPA(t) ) NA(t)/[NC(0)

+ NA(0)] are the fractions of C and A molecules whose
equilibrium values are

whereKeq ) ka/kd is the equilibrium constant. It is now firmly
established thatR(t) follows the asymptotic power law:7-11

The power law dependence was unambiguously confirmed
experimentally,12,13 though in the case of nonzerouA anduC it
is combined with the exponential drop in the survival
probabilities.14-16

The asymptotic expression (eq 1.5) represents the very end
of the kinetics when, for instance,PC(t) starting fromPC(0) )
1 is already 3 or 4 orders of magnitude smaller. This tail is
hardly available for detection even with contemporary single-
photon counting. Besides, the question arises, What is the
difference in the precursor time evolution ofPC(t) or PA(t)
predicted using a number of different theoretical methods?

Here we are going to switch our attention from the asymptote
to the total time evolution ofPC(t) or PA(t), both of which
entirely contribute to the relative quantum yields of the
fluorescence:

Both of them can be universally expressed through the Stern-
Volmer constantκ. Using the latter as a standard for comparison
between the theories of irreversible quenching, we have already
demonstrated how theκ(c) dependence for each particular theory
deviates from that represented by differential encounter theory
(DET).17 The latter was commonly recognized as being exact
for at least a target problem.18,19But even for a mobile A, DET
remains a good approximation.20

In the case of a reversible reaction of the type shown in eq
1.1, the problem becomes more difficult. After the dissociation,* Corresponding author. E-mail: cfbursh@wisemail.weizmann.ac.il.
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∞
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other B molecules can be involved in the reaction with A. This
many-particle competition for the partner couples the motion
of the molecules, making the problem unsolvable analytically.
Thus, only approximate solutions were obtained using rather
different methods and assumptions whose validity very often
remains unclear.

The repeating binding-unbinding processes change the
spatial distribution of B’s around A. But the movement of A
also affects the concentration profile of the B particles.
Therefore, the motion of both A and B should have an influence
on the reaction. We have to restrict our consideration by only
two opposite limits: the “target problem”, when A and C are
static (DA ) DC ) 0) while the pointlike B molecules move
independently (DB * 0), and the “trap problem”, in which a
single particle A accomplishing diffusion withDA * 0 between
immovable B particles can be trapped by one of them and form
an immovable C (DB ) DC ) 0). Besides, we will assume that
the reaction takes place only at the contact distance, which is
definitely the case for the proton transfer (eq 1.2). Owing to
the mentioned complexity of the problem, the vast majority of
existing theories also deal only with contact reactions, although
a few of them can be extended to the distant (electron or energy)
transfer as well.

The comparative analysis of theκ(c) dependencies undertaken
here allowed us to discriminate between different theories
judging by the result. Moreover, it points the way to how they
may be inspected experimentally. By comparison with easily
available data forκ(c), one can make the right choice of the
best theory.

This paper is constructed as follows. In section II, we outline
the central points of the kinetics of reversible reactions. In
section III, DET is briefly discussed. Section IV describes
several of the foremost approaches to reversible reactions. In
the Results section, we compare the concentration dependencies
of the kernels and Stern-Volmer constants for all of the theories
under investigation, and we summarize all of the findings in
the Conclusions.

II. Kinetics of Reversible Dissociation

To describe the kinetics of dissociation in the pseudo-
unimolecular limit, when excited A molecules are surrounded
by the B particles present in great excess, we propose the
following set of integro-differential equations that are linear in
c:

They may be obtained by means of the matrix integral encounter
theory (IET) reviewed in ref 21, together with the particular
definitions of kernels that are concentration-independent in IET.
However, from a more general point of view, eqs 2.1 are an
implementation of memory function formalism in chemical
kinetics. The form of these equations shows the essentially non-
Markovian character of reversible reactions in solution: the
convolution integrals entail the prehistoric evolution of the
process. They constitute the formal basis for the treatment of

the transfer phenomenon that is qualitatively different from the
conventional rate equations. We have already proven that all
of the theories of irreversible transfer are reducible to the proper
integral equation and differ only by the definitions given to its
kernel.17 The theories of reversible geminate dissociation
proposed by Berg,22 Burshtein,23 Agmon,24 and Szabo25 can also
be represented by eq 2.1b atc ) 0.26 Now we extend this
conclusion toc * 0. In many sophisticated theories that we
will compare, the results are presented differently. However,
all of them after some manipulation can be shown to obey eqs
2.1, although the kernels are specific to each of them. Omitting
these manipulations, we will concentrate on the results: the
difference between concentration dependencies of the kernels
obtained from different theories.

Assuming a spherical symmetry of the reactions, one has to
represent them by the distance-dependent rates of association,
Wa(r), and dissociation,Wd(r). In the contact approximation,
they are replaced by the kinetic rate constants,ka andkd, of the
corresponding reactions that occur only at the closest approach
distance,σ:

KernelsFa andFd take the following form

whereΣ(t) remains a single parameter that is specific to each
theory. This kernel holds the memory effect. In the framework
of ordinary chemical kinetics,Σ(t) ) δ(t), and therefore the
system (eq 2.1) acquires the pure differential form. In fact, this
is possible only in the limit when the reaction is entirely under
kinetic control.

In their contact form, eqs 2.1 are perfect if the exactΣ(t) is
known.27 They can be formally solved in the Laplace domain.
The quantities

which are the Laplace images ofPA(t) and PC(t), can be
expressed through the Laplace transformationΣ̃(s) of kernelΣ(t)
in the following way:

where the denominator

and the sum of the initial probabilitiesPA(0) + PC(0) ) 1.
For stable particles (uA ) uC ) 0), one can easily deduce

from the last equation the Laplace transformation of the
relaxation function:

dPA

dt
) -uAPA - c∫0

t
Fa(t - τ) PA(τ) dt +

∫0

t
Fd(t - τ) PC(τ) dτ (2.1a)

dPC

dt
) -uCPC + c∫0

t
Fa(t - τ) PA(τ) dτ -

∫0

t
Fd(t - τ) PC(τ) dτ (2.1b)

ka ) ∫σ

∞
Wa(r) 4πr2 dr kd ) ∫σ

∞
Wd(r) 4πr2 dr (2.2)

Fa(t) ) kaΣ(t) Fd(t) ) kdΣ(t) (2.3)

P̃A,C(s) ) ∫0

∞
PA,C(t) exp(-st) dt

P̃A(s) )
(s + uC)PA(0) + kdΣ̃(s)

Q(s)
(2.4a)

P̃C(s) )
(s + uA)PC(0) + ckaΣ̃(s)

Q(s)
(2.4b)

Q(s) ) (s + uC)(s + uA) + (cka(s + uC) + kd(s + uA))Σ̃(s)
(2.5)

R̃(s) )
P̃C(s) - PC/s

1 - PC

) 1

s + (kd + kac)Σ̃(s)
(2.6)
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The concentration-independent kernel of IET denoted later as
Σ̃0(s) can be borrowed from the integral encounter theory of
purely geminate dissociation:26

whereg(s) ≡ G̃0(σ, σ, s) is the Laplace transformation of the
Green function of the free diffusion around a hard sphere with
the reflecting boundary condition at the contact:23

HerekD ) 4πσD is the diffusional rate constant;τd ) σ2/D is
the encounter time; andD ) DA + DB is the relative diffusion
coefficient of particles A and B.

Gopich and Doktorov also obtained a result similar to eq 2.6
except that instead ofG̃0(σ, σ, s) they used the Green function
of penetrable spheres.28 Even earlier, the same result was derived
in the framework of statistical nonequilibrium thermodynamics,
but using instead of contactG̃0(σ, σ, s) the free-space Green

function29 G̃0(σ, 0, s) ) exp (-xsσ2/D)/kD. At smalls , D/σ2,
the difference between the Green functions disappears because

all of them are approximated asg(s) ≈ [1 - xsσ2/D]/kD.
Using this approximation in eq 2.7 and then taking the inverse
Laplace transformation of eq 2.6, one obtains the asymptotic
relaxation to the equilibrium:29

It obeys the same power law as in eq 1.5, but the multiplier
(1 + cKeq) is peculiar to IET, whose kernel is concentration-
independent unlike those in most other theories compared below.
When more adequate methods were used to study the target7-10,30

and trap problems,8,28,30 it was proven that

The most general theory valid for the arbitrary diffusion
coefficients,DA, DB, andDC, also corrects only the denominator
of eq 2.9, in full accordance with both the target and trap limits.11

If c ) 0, then only the dissociation of C makes any sense. In
the contact approximation, this geminate case was repeatedly
discussed in the literature.22,26WhenuA,C * 0, the dissociation
starting fromPC(0) ) 1 proceeds as follows:

At infinitely large D (kinetic control limit),Σ̃0(s) ) 1, and we
return to the exponential decay,PC(t) ) exp(-(uC + kd)t), which
is imposed by conventional chemical kinetic laws.

At c * 0, there is an alternative: either A (PA(0) ) 1,
PC(0) ) 0) or C (PA(0) ) 0, PC(0) ) 1) can be initially excited.
The former case is typical of impurity quenching (by B’s) whose

relative quantum yieldηAA can be obtained from eqs 1.6 and
2.4a by settingPA(0) ) 1:

This is the conventional Stern-Volmer law but with the constant
defined as follows:

If the fluorescence of C is registered at the same initial
conditions, then its quantum yieldηCA can be found from eqs
1.6 and 2.4b:

This conservation law for excitations holds because there is no
recombination to the ground state accompanying the transfer
in either direction.

If the C particle surrounded by B’s (given in concentration
c) is initially excited, then the quantum yields of fluorescence
through both channels,ηCC and ηAC, can be found from the
same equations but with opposite initial conditions:PA(0) ) 0,
PC(0) ) 1. The conservation law applied to this case as well:

However, instead of the Stern-Volmer law, we have another
one:

From this linear relationship, two essential parameters of
the problem can be obtained by fitting the experimental data:
(uC/uA)Keq andκ. The latter is an invariant of the problem that
is easily available experimentally in a few ways.

The quantityκ0 ) lim
cf0

κ(c) may be considered to be an
“ideal” Stern-Volmer constant, conforming to the original,
truly linear Stern-Volmer dependence. In the contact ap-
proximation, this value ofκ can be derived from eq 2.13 with
Σ̃(0) ) Σ̃0(uA):

where k′a ) ka/(1 + kd/uC) is the overall association rate
constant that is renormalized due to the reverse reaction. This
is the relationship that also follows from the equations of
ordinary chemical kinetics applied to reaction 1.1.

If the association is irreversible (kd ) 0), thenκ from eq 2.13
is proportional toΣ̃(0). The concentration dependence of thisκ

has been investigated in ref 17 in the framework of several
theories, contact and noncontact, and compared with the exact
solution given by DET for the target problem.

For reversible reactions,κ is constructed from two parts that
are responsible for the forward (kaΣ̃(0)/uA) and backward
(kdΣ̃(0)/uC) processes. Both of them are proportional toΣ̃(0),
which in turn is an even better standard for the comparison of
different theoretical approaches. The majority of them provide
Σ̃(s) when two lifetimes are equal,uA ) uC. In this case, the
formal solution is the same as for the reversible reaction between

Σ̃0(s) ) 1
1 + kag(s)

(2.7)

g(s) ) 1

kD(1 + xsτd)
(2.8)

R(t) )
Keq

(1 + cKeq) (4πDt)3/2
at t f ∞ (2.9)

R(t) ) { Keq

(1 + cKeq)
2(4πDt)3/2 target problem

Keq

x1 + cKeq(4πDt)3/2 trap problem

(2.10)

P̃C(s) ) 1

s + uC + kdΣ̃0(s + uA)
(2.11)

1
ηAA

) 1 + cκ (2.12)

κ )
kaΣ̃(0)/uA

1 + kdΣ̃(0)/uC

(2.13)

ηCA ) ηC|PA(0))1 ) 1 - ηAA (2.14)

ηCC ) ηC|PC(0))1 ) 1 - ηA|PC(0))1 ) 1 - ηAC (2.15)

1
1 - ηCC

)
uCKeq

uAκ
[1 + cκ] ) 1

ηAC
(2.16)

κ0 )
ka/uA

1 + kag(uA) + kd/uC

)
k′a/uA

1 + k′ag(uA)
(2.17)
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the ground-state particles, but it is multiplied by exp(-uAt).
In the Laplace space, it leads to a shift in the Laplace variable,
s f s + uA.

III. Irreversible Reactions

For irreversible reactions, DET allows for the spatial depen-
dence of the sink terms. The survival probabilityPA(t) in the
framework of this theory is23

The ultimate fate of A in the irreversible case is to turn into
product C, provided it did not dissipate earlier. Therefore,PA(t)
goes to zero with a rate ofuA + ckirr(t). The time-dependent
rate constant

but in the contact approximation and in absence of electrostatic
interactions, it is defined as follows:31

This is actually the boundary condition to the equation for the
pair correlation functionn(r, t), which in highly polar solvents
takes the simplest form:32

The well-known solution of this equation allows one to specify
the rate constant31,33

as well as its Laplace transformation

At kd ) 0, the Stern-Volmer constant (eq 2.13) returns to
its irreversible analog

where

IV. Reversible Reactions

All of the theories compared below reproduce the ideal
Stern-Volmer constant (eq 2.17) that coincides with IET
at c ) 0. The only exceptions are the theory of Vogelsang
et al.34,35 and the so-called phenomenological rate equations
proposed by Lee and Karplus36 and used in a number of other
works.29,37,38

In Vogelsang’s approach, the ideal Stern-Volmer constant
takes the form

which is different from the exact form, eq 2.17. The main point
of this theory is that at the moment just after dissociation all B
particles (including the released one) form the equilibrium
distribution around A. It is clear that only the fast diffusion or
fast relaxation of C can validate the theory, but it is irrelevant
in the majority of other cases. Moreover, Vogelsang’s theory
gives an incorrect result for the equilibrium probabilities (eq
1.4), thus violating the mass action law.25 For all of these
reasons, we exclude this theory from further consideration.

The modified or phenomenological rate equations have
already been heavily criticized in ref 26, but they will neverthe-
less be included in the following comparison with the rest of
the theories. The kernels related to all of them are collected in
Table 1 (for the target problem) and Table 2 (for the trap
problem). These are kernels obtained from the original theories
in the framework of the contact approximation.

A. Convolution Approaches.Berg’s work22 was chronologi-
cally the first theory of a diffusion-influenced reversible reaction
that was later well grounded and analyzed by Agmon and
Szabo.24 Berg made the assumption that at any moment of
dissociation a newborn A-B pair is surrounded by the equi-
librium distribution of B particles. As a result, this theory works
better near the irreversible limit, where the dissociation events
are rare and the trap is mostly bound. Also, it correctly reduces

euAtPA(t) ) Sirr(t; c) ≡ exp(-c∫0

t
kirr(t′) dt′) (3.1)

kirr(t) ) ∫Wa(r) n(r, t) d3r

kirr(t) ) kan(σ, t) ) 4πσ2D
∂n
∂r |r)σ

(3.2)

∂

∂t
n(r, t) ) D∆n(r, t) n(r, 0) ) 1 (3.3)

kirr(t) )
kakD

ka + kD
×

[1 +
ka

kD
exp((1 +

ka

kD
)2 t

τd
) erfc((1 +

ka

kD
)x t

τd
)] (3.4)

k̃irr(s) )
ka/s

1 + kag(s)
(3.5)

κirr )
kaΣ̃irr(0; c)

uA
(3.6)

Σ̃irr(s; c) ) 1
cka

[S̃irr
-1(s + uA; c) - (s + uA)] (3.7)

TABLE 1: Σ̃(s) for the Target Problem

theory Σ̃(s)-1

CA Σ̃irr
-1(s; c)

MRE, uA ) uC Σ̃irr
-1(s; c + Keq

-1)
LSA ) IET Σ̃0

-1(s + uA)
LESA, uA ) uC PAΣ̃0

-1(s + uA) + PCS̃0
-1(s + uA + cka + kd)

MPK1, uA ) uC PAΣ̃0
-1(s + uA) + PCΣ̃irr

-1(s; c + Keq
-1)

MPK2 (1 - ν(s))Σ̃0
-1(s + R-(s)) + ν(s)Σ̃0

-1(s + R+(s))
atuA ) uC PAΣ̃0

-1(s + uA) + PCΣ̃0
-1(s + uA + (cka + kd)Σ̃(s))

MPK3 ) MET (1 - µ(s))Σ̃0
-1(s + â-(s)) + µ(s)Σ̃0

-1(s + â+(s))
(atuA ) uC) PAΣ̃0

-1(s + uA) + PCΣ̃0
-1(s + uA +

(cka + kd)Σ̃0(s + uA))
SCRTA,uA ) uC PAΣ̃0

-1(s + uA) + PCΣ̃0
-1 (s + uA + λ)

λ ) (cka + kd)/(1 + kag(λ)/[kDg(P2
Aλ)])

auxiliary functions

R((s) ) 1/2(Y(s) ( xY(s)2 - 4Z(s))
Y(s) ) uA + uC + (cka + kd)Σ̃(s)
Z(s) ) uAuC + (ckauC + kduA)Σ̃(s)
ν(s) ) (R+(s) - uC - kdΣ̃(s))/(R+(s) - R-(s))

â((s) ) 1/2(y(s) ( xy(s)2 - 4z(s))
y(s) ) uA + uC + (cka + kd)Σ̃0(s + uA)
z(s) ) uAuC + (ckauC + kduA)Σ̃0(s + uA)
µ(s) ) (â+(s) - uC - kdΣ̃0(s+uA))/(â+(s) - â-(s))

TABLE 2: Σ̃(s) for the Trap Problem

theory Σ̃(s)-1

MPK3 ) MET
(atuA ) uC)

Σ̃0
-1(s + uA + cka/[ kd

s + uC
+ Σ̃0

-1(s + uA)])
SCRTA,uA ) uC Σ̃0

-1(s + uA + cka/[ kd

s + uA
+ Σ̃0

-1(0)])

κ0 )
k′a/uA

1 + kag(uA)
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to the geminate limit, eq 2.11, when an isolated A-B pair is
formed due to the decay of C. There are also other authors who
started later from the same assumption and obtained the same
result.24,25,39In ref 24, it was called the convolution approxima-
tion (CA).

B. Phenomenological Rate-Equation Approach.The modi-
fied rate-equation approximation (MRE)25 was also built to
describe the non-Markovian character of diffusion-controlled
reversible reactions. The forward reaction ratekirr(t) was left as
it appeared in the conventional contact theory, eq 3.4. As for
the backward reaction rate, it was modified to be proportional
to kirr(t):

This was done to “predict the correct equilibrium solution at
long times” ifuA ) uC ) 0. In the case of equal lifetimes, when
uA ) uC * 0, the solution of eqs 4.1 is expressed through the
function Sirr(t; c). With kernel Σ̃(s) presented in Table 1, one
can findκ0 from eq 2.13:

This result does not coincide with that of IET, eq 2.17; that is,
MRE does not hold the geminate limit (Figure 1). In ref 40,
eqs 4.1, which are also called “phenomenological rate equa-
tions,”29,37,38were extended to the noncontact case of distant

transfer reactions. However, either of such equations can be
justified in the kinetic control limit only. Moreover, atuA *
uC, MRE loses the phenomenon of delayed fluorescence through
the particle with a shorter lifetime.26

C. Encounter Theories. The contact IET provides the
following Laplace transformation of the kernels (eq 2.3):41

With k̃irr(s) from eq 3.5 substituted into this equation, one can
see that the correspondingΣ̃(s) is exactly equal toΣ̃0(s + uA).
This is not surprising because IET represents just the small
concentration limit, that is, the ideal Stern-Volmer constant,
κ0.

The unified theory (UT) developed recently in refs 23 and
26 allows one to add the bimolecular generation of exciplexes
(i.e., C particles) or their light-induced generation to the process
of their subsequent reversible dissociation. Under the condition
of instantaneous exciplex formation, this theory reduces to IET
(eqs 6 and 54 of ref 26).

The most elaborated modified encounter theory (MET)42,43

is one that gives different forms forΣ̃(s) in the trap (Table 1)
and target (Table 2) limits. In the case of a contact reaction
with uA ) uC, MET was shown to be identical to MPK3.44

D. Superposition Approach.The superposition approxima-
tion (SA) was suggested in refs 25 and 45. It is essentially a
nonlinear theory that cannot be represented in the form of eqs
2.1. The same is true for the extended version of SA.46 Because
of this, we focus on two derivatives of these theories linearized
near the equilibrium. These are the linearized superposition
approximation (LSA) and the linearized extended superposition
approximation (LESA). It was found that LSA developed in a
number of works25,36,40,46is in fact identical to IET (Table 1).
They both have the same concentration-independent kernelΣ̃(s).
As for LESA, it was strictly created for the reactions in the
ground state7,8 but can be easily extended to the case of equal
lifetimes,uA ) uC.

E. Multiparticle Kernel Approximation. In refs 27, 44, 47,
and 48, a set of approximate solutions for the contact reactions
were suggested. These solutions are based on a hierarchical
system of diffusion equations forn-particle probabilities. The
truncation of this system at second order has led to the so-called
multiparticle kernel 3 (MPK3) approximation44 and third order
has given MPK2 theory,27,47but the most accurate approxima-
tion, MPK1, has been obtained in ref 48 by truncating this
system at fourth order. The latter theory is a remarkable one
because it correctly reduces to all of the limits available for a
strict investigation: to the irreversible case,kd ) 0, where it
coincides with DET and to the geminate case,c ) 0, where it
reproduces IET.

A comparison with the Brownian dynamics simulations of
reaction 1.1 in the target limit for infinite lifetimes49 showed
excellent agreement even at the unusually large value ofc.
MPK1 was probably not generalized for the case of different
lifetimes because of the complexity of the derivation.

Whereas MPK1 and MPK2 describe only the target problem,
MPK3 is able to treat the trap problem as well (Table 2). At
equal lifetimes, it exactly reproduces MET in both these
limits.42,44

F. SCRTA. A. Szabo and I. Gopich suggested the self-
consistent relaxation time approximation30 (SCRTA). This
approach considers two pair correlation functions,pAB(r, t) and
pCB(r, t), that describe the density of B’s around the unbound

Figure 1. Laplace transformation of the kernel of integral
equations,Σ̃(0), plotted as a function of dimensionless concentration
cV (V ) 4πσ3/3 is an inaccessible volume). Different theories are
compared atuA ) uC ) 1/τ for (A) short and (B) longτ. The rest of
the data are the following:σ ) 7 Å, ka/V ) 43 ns-1, kd ) 5 ns-1,
D ) 100 Å2/ns ) 10-5 cm2/s.

d
dt

PA ) -ckirr(t)PA +
kd

ka
kirr(t)PC - uAPA (4.1a)

d
dt

PC ) ckirr(t)PA -
kd

ka
kirr(t)PC - uCPC (4.1b)

κ0 ) Keq(1 - uAS̃irr(uA; Keq
-1))

F̃a(s) ) (s + uA)k̃irr(s + uA) F̃d(s) )
kd

ka
F̃a(s) (4.2)
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and bound traps, respectively. These functions are bounded by
the set of equations taking into account that a given couple, A
and B, disappear not only because of their own association in
C but also because of a similar alliance of A with some other
B (a “bachelor” coming from the bulk). These functions become
equal on reaching equilibrium.

SCRTA deals with equal lifetimes but can account for the
arbitrary diffusion coefficients of the reactants. It can also afford
the use of the distance-dependent reaction rates but breaks down
near the irreversible limit.30

V. Results

Because only some of the theories deal with the case in
whichuA * uC, we examine here only the case of equal lifetimes,
uA ) uC. As a standard for comparison, we chose the Laplace
transformation of the kernel,Σ̃(0), which determines the Stern-
Volmer constant and all related quantum yields. The kernels
specified in all of the theories are listed in the Tables and are
represented in Figure 1 for the entire concentration range up to
the kinetic limit where allΣ̃(0) approach 1. The Figure allows
us to distinguish between the target and trap limits. In the latter
case, particle A during its motion can hit only one of the B
molecules (the others do not move). This is why the efficiency
of the reaction does not increase withc as rapidly as it does in
the opposite case, when A is stable and the B’s are moving.
However, at a short lifetime (0.1 ns), this difference in MPK3
is not as pronounced as in SCRTA, and at longer lifetimes
(1 ns), both theories predict a larger difference and almost
coincide for the trap problem.

Others theories are applicable to only the target problem, but
the dispersion of the results is not much less. Judging from our
previous investigation, we are inclined to believe that the results
for MPK1 are the most reliable because in the case of
irreversible transfer they were exact.17 However, the genuine
discrimination between the theories can be made either by
numerical simulations or by a comparison of theoreticalκ(c)
dependencies (Figure 2) with those obtained experimentally.
According to eq 2.13,κ differs from Σ̃(0), especially at largec
where it approaches the upper limit,

In Figure 2, only those theories are compared that give the same
minimal and maximal values ofκ at c ) 0 and∞, correspond-
ingly. However, they are very different in between. Two of
them, LESA and MPK3, essentially deviate from all the rest of
the theories describing the target problem (Figure 2A). This is
not a surprise because we have already detected the same by
studying the irreversible quenching.17 Some discrimination
between others can be made judging by the right asymptotic
behavior at long times, eq 2.10. There are only two between
them that are capable of reproducing it: MPK1 and SCRTA.
The difference between them is noticeable but greatly diminishes
with increasingτ. Nevertheless, MPK1 has the advantage of
excellent correspondence with the Brownian dynamic simula-
tions of the whole time behavior ofR(t) obtained in ref 49. The
experimental investigation of the same dependencies is possible
only in a limited range of concentrations where the results should
be compared with those presented in Figure 2B. We hope that
the result obtained here will stimulate progress in both experi-
mental and numerical studies of reversible dissociation at
moderate and high concentrations, correspondingly.

VI. Conclusions

The non-Markovian nature of diffusion reactions in solution
so far has attracted the attention of only those who investigate
the power asymptote of approaching the equilibrium. Here we
emphasize that the entire kinetics is of no less interest, especially
the integral of it that determines the quantum yields of
fluorescence from either an initially excited particle or reaction
product. We showed that both of the quantum yields that are
easily available experimentally are determined by one and the
same Stern-Volmer constant. The latter, in turn, is expressed
through a single invariant of the theory: the kernel of integral
equations that governs the kinetics of transfer reactions. These
equations are really universal. We were able to deduce them
from almost all of the available theories and specify the kernel
for each of them.

Having in hand the collections of these kernels, we proved
once again that as [B]f 0 all of them coincide with that of
IET except for only two methods, which were recognized as
incorrect. At higher concentration, all of the kernels monotoni-
cally increase when approaching the common upper limit but
differ essentially in between. Some difference may be attributed
to the objective difference in the diffusion coefficients of the
partners if one of them moves while another does not or vice
versa. However, there is a difference between the theories in
each of these cases, and this is the price for the inaccuracy in
the basic assumptions. From now on, it is possible to discrimi-
nate between them by using for comparison real experimental
data or computer simulations.

κm )
kaτ

(1 + kdτ)
f Keq at τ f ∞

Figure 2. Stern-Volmer constant,κ, from eq 2.13 atuA ) uC ) 1/τ as
a function of the dimensionless concentration of B’s in the same theories
as in Figure 1 including LESA but without MRE because it is alone,
which is not brought to a pointκ0 at c f 0. Over a wide range of
concentration (A) all curves increase from this ideal value up to the
maximal one,κm. At low concentrations (B) the difference between
them is more pronounced. All parameters are the same as in Figure
1A.
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